2/3x^2+15=23

Simple and best practice solution for 2/3x^2+15=23 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x^2+15=23 equation:



2/3x^2+15=23
We move all terms to the left:
2/3x^2+15-(23)=0
Domain of the equation: 3x^2!=0
x^2!=0/3
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x^2-8=0
We multiply all the terms by the denominator
-8*3x^2+2=0
Wy multiply elements
-24x^2+2=0
a = -24; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-24)·2
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-24}=\frac{0-8\sqrt{3}}{-48} =-\frac{8\sqrt{3}}{-48} =-\frac{\sqrt{3}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-24}=\frac{0+8\sqrt{3}}{-48} =\frac{8\sqrt{3}}{-48} =\frac{\sqrt{3}}{-6} $

See similar equations:

| t-2/3+2t/3=2t+4/3 | | 943=3.14x(12) | | d=(16(2))^2 | | 3.8x+1+9.7x=2.6+13.3x | | d=16(2)^2 | | -4x3+12x2+15x=0 | | |x−2|=6 | | 2(x+5)=6(x+1 | | Y+6x=-5 | | 3+12x-2=5x+36 | | b-13=14 | | 2f-7=11 | | H=-16t^2+727 | | 5e+4=19 | | 11h-14=63 | | 7g+1=36 | | 9w+3=21 | | 3/x-4=5/x-1 | | 23+7x=3x+35 | | 5p-3(2=6p) | | 15(2x-26)=6(3x-29);x | | 10(x+3)-50=4(x+1);x | | 4(x-7)=3(x+3)-10;x | | 24x-3x=6x+17 | | 5(x-16)=3(x-6);x | | 2(x-6)=x+4;x | | 6(x-9)=18;x | | 7(x-12)=14;x | | 4(x-8)=28;x | | 3x+5-x=x+11 | | 10a+4=8a= | | 50-2x=100-2x |

Equations solver categories